

Using the CDF II Detector

INFN – Trieste for the CDF Collaboration

36th International Conference on High Energy Physics Melbourne, Australia, July 4-11, 2012

Flashback

 At the Tevatron the H → WW decay represents the golden search channel for a high-mass Standard Model Higgs boson.

Today I'm presenting the results on the full CDF Run II dataset.

Overview of the H-WW search channel

- Given the SM Higgs $p\bar{p}$ production σ_H at 1.96 TeV, searches for a SM Higgs are most sensitive in the range 100-200 GeV/ c^2 .
- The WW final state dominates for masses $m_H > 135 \text{ GeV/c}^2$.

• Pros:

- WW takes advantage of the direct gg → H production process;
- final states with high-p_T leptons provide relatively clean experimental signatures.

Cons:

• Only a partial candidate reconstruction is achievable due to the escaping neutrinos.

Search strategy

- Search for all the SM Higgs production modes: $gg \rightarrow H$, WH, ZH, VBF (in 10 fb⁻¹ produced 270 evts for $m_H = 125$ GeV/c² and 485 evts for $m_H = 165$ GeV/c²).
- Loose kinematical event selection, followed by MVA techniques for a more effective signal-background separation.
- To inhance sensitivity, analysis conducted on multiple independent data samples, whose selection is targeted to specific production mechanisms:
 - opposite-sign dileptons with 0 or 1 jet;
 - opposite-sign dileptons with low $M_{\ell\ell}$;
 - opposite-sign e- τ_{had} and μ - τ_{had} ;
 - opposite-sign dileptons with 2 or more jets
 - same-sign dileptons with 1 or more jets;
 - trileptons.

most sensitive to direct $gg \rightarrow H$ production

most sensitive to associated WH and ZH production

Results from different channels are then combined together.

Event selection

- Used 9.7 fb⁻¹ of pp̄ data collected by the CDF detector with single high-p_T electron and muon triggers.
- Basic event selection:
 - two or three charged leptons originating from the same vertex: $p_T > 20$ GeV/c for trigger leptons, $p_T > 10$ GeV/c otherwise;
 - large missing transverse energy.
- Globally expected:
 - ~76 signal events at 165 GeV/c² (~18 events at 125 GeV/c²);
 - 5960 background events.

Signal and background modeling

- In order to exploit at best the kinematical differences to discriminate signal and backgrounds, a very accurate modeling for all processes is needed.
- Higgs signals: PYTHIA.
- Standard Model backgrounds:
 - WW: MC@NLO, PYTHIA, ALPGEN;
 - WZ, ZZ: PYTHIA, ALPGEN;
 - Drell-Yan: PYTHIA, ALPGEN, MADGRAPH;
 - tt: PYTHIA;
 - W/Z + γ : Baur-Berger generator, MADGRAPH;
 - W/Z + jets: data driven, ALPGEN;
 - dijet, jet + γ : data driven.
- Monte Carlo samples are normalized to the highest-order theoretical cross-section calculation available.

Control samples

- Selected background-enriched samples in data to tune/check the modeling of specific background processes:
 - similar selection to the search sample;
 - negligible signal content.

• Modeling and analysis procedure further validated by measuring the diboson production cross sections in the search sample with the same methods.

Signal-background discrimination

- We are looking for a small signal out of an overwhelming background: across the search samples signal/background ratio ~1/80-1/500.
- Advanced MVA techniques (ANN and BDT) allow to better utilize the event information to maximize the signal-background discrimination:
 - ANN and BDT trained on signal vs backgrounds;
 - kinematical, event-global and particle-identification variables used as inputs to the MVA algorithms;
 - separate MVAs for 19 test Higgs masses.

MVA output distributions

• Since no significant excess is seen in the high score region, the MVA output distributions are used to set upper limits on the SM Higgs production $\sigma_{\rm H}$.

Results

• 95% C.L. upper limits of individual search channels:

H → WW combined limit

Excluded at 95% C.L. the mass range $148 < m_H < 175 \text{ GeV/c}^2$ (expected exclusion in absence of signal $154 < m_H < 176 \text{ GeV/c}^2$ at 95% C.L.)

Conclusions

- The full CDF Run II dataset, corresponding to ~10 fb⁻¹ of data, has been analysed in search of a H \rightarrow WW signal over the mass range 110 < m_H < 200 GeV/c².
- The combined analysis achieves sensitivity to the expected SM Higgs production cross section around $m_H = 165 \text{ GeV/c}^2$.
- No evidence for a signal is found and upper limits are set on the SM Higgs production cross section, which exclude at 95% C.L. the mass range:

$$148 < m_H < 175 \text{ GeV/c}^2$$
.

